Wie viele verschiedene Stellungen gibt es auf dem Zauberwürfel?

Als erste Frage in der Artikelserie über Wissenwertes rund um den Zauberwürfel soll es hier darum gehen, wie viele verschiedene Positionen der Rubik’s Cube einnehmen kann, wenn man ihn vermischt. Diese Zahl wird gerne und häufig zitiert, und sie ist wirklich beeindruckend:

  • 43.252.003.274.489.856.000 Stellungen

Das sind gut 4,3 x 1019 Stellungen („4,3 mal 10 hoch 19“). Oder, wenn man es gerne vorlesen möchte:

  • 43 Trillionen
  • 252 Billiarden
  • 3 Billionen
  • 274 Milliarden
  • 489 Millionen
  • 856 Tausend

Und es sind NICHT „über 43 Quintillionen“, wie man auch ab und zu mal hört. Das kommt daher, dass wir im deutschen Sprachraum die „lange Skala“ verwenden und zum Beispiel im Englischen Sprachraum die „kurze Skala“ üblich ist. Nach der Million kommt bei uns nicht gleich die Billion, sondern erst einmal die Milliarde. Näheres auf Wikipedia unter Lange und kurze Skala. Auf Englisch wäre diese riesige Zahl also „43 quintillion, 252 quadrillion, 3 trillion, 274 billion, 489 million and 856 thousand“.

Mein Zauberwürfel-Turm hat nur 21 verschieden verdrehte Cubes, aber steht schon so wackelig, dass er in die Ecke muss.

So oder so, die Zahl ist erst einmal gigantisch. Wenn man für jede dieser Stellungen nur einen einzigen Zauberwürfel hätte, und man könnte diese übereinander stapeln, wie hoch wäre wohl der Turm? Bis zum Mond (etwa 1 Lichtsekunde)? Oder gar bis zur Sonne (etwa 8 Lichtminuten)? Was schätzt Ihr?

Ich hab’s nachgerechnet, weil ich die Zahl im Buch „Cracking the Cube“ zunächst nicht glauben wollte: Bei der Standard-Größe von 57mm ergäben gut 43 Trillionen Zauberwürfel übereinander gestapelt einen Turm von etwa 260 Lichtjahren! Echt jetzt! Ihr könnt es selber einfach ausrechnen, mit dem wissenschaftlichen Taschenrechner Eures PC oder Handys:

  • 43.252.003.274.489.856.000 Stellungen
  • mal 57 (Höhe des Turmes in Millimetern
  • geteilt durch 1000 (Höhe des Turmes in Metern)
  • geteilt durch 1000 (Höhe des Turmes in Kilometern)
  • geteilt durch 300.000 (ca. Lichtgeschwindigkeit Kilometer pro Sekunde. Also Höhe des Turmes in Lichtsekunden)
  • geteilt durch 60 (Höhe des Turmes in Lichtminuten)
  • geteilt durch 60 (in Lichtstunden)
  • geteilt durch 24 (in Lichttagen)
  • geteilt durch 365,25 (in Lichtjahren)

Wenn Ihr es nachrechnet, solltet Ihr auch bei ca. 260 Lichtjahren landen. Also ein wenig weiter als die Sonne mit ihren läppischen 8 Lichtminuten. 😉 Vielleicht kommt Euer Zauberwürfel-Turm bei HD 149026b heraus, einem „heißen Jupiter“ in 260 Lichtjahren Entfernung. Allerdings würden dort selbst Zauberwürfel aus Platin wegschmelzen. Baut man den Turm in eine andere Richtung, landet man auf einem „ultraheißen Neptun“ namens LTT 9779 b; klingt auch sehr ungemütlich. Dann lieber ein „Diamant im Haar der Berenike“, also zum Coma-Sternhaufen, der ebenfalls 260 Lichtjahre entfernt ist.

Die Zahl der 43.252.003.274.489.856.000 möglichen Stellungen wird übrigens recht gut auf Wikipedia hergeleitet:

Es ist tatsächlich so, dass nur ein Zwölftel aller willkürlich (also gemischt) zusammengesetzten Zauberwürfel überhaupt lösbar sind. Dies ist auch Thema in meinem Artikel Unlösbaren 3×3-Würfel öffnen und korrigieren. Mit einem 12mal höheren Turm käme man also über 3100 Lichtjahre weit ins All. Aber wozu? 😉

In dem eben schon erwähnten Buch „Cracking the Cube“ habe ich noch eine weitere interessante Art gefunden, die 4,3 mal 10 hoch 19 zu veranschaulichen. Man könnte mit dieser Menge Cubes den gesamten Erdball etwa 15 Meter hoch bedecken (Land und Wasser). Damit wird wohl auch deutlich, dass die meisten dieser 43 Trillionen Stellungen noch nie jemals in irgendeinem der (laut Forbes) etwa 450 Millionen verkauften Cubes erreicht wurden, denn es sind etwa 95 Milliarden Scrambles pro existierendem Zauberwürfel.

Spannender als die bloße Zahl finde ich allerdings die Frage, ob es überhaupt sinnvoll ist, diese 43 Trillionen (4,3 mal 1019) Stellungen auf dem Zauberwürfel als herausragendes Merkmal in quasi jeder Sendung und jedem Artikel anzuführen? Vergleichen wir diese Zahl doch mal mit den möglichen Stellungen auf einem Legepuzzle, wie sie für Erwachsene und Kinder in zigtausenden Varianten mit teilweise tausenden Puzzleteilen hergestellt werden.

(c) 2015 by Doro Schmitz

Nehmen wir ein sehr einfaches Kinderpuzzle mit nur 3×7 Steinen, also nur 21 Puzzleteile. Wir malen uns ein Raster von 21 Kästchen, in die sich die Teile hineinlegen lassen (oder wir stellen uns einfach quadratische Puzzleteile vor, ohne diese Nasen). Wie viele verschiedene Möglichkeiten gibt es? Das erste Puzzleteil, das wir aus dem Karton holen, hat 21 Felder zur Auswahl, der nächste 20, dann 19 und so weiter. Also Fakultät von 21. Umgerechnet sind das: 5,1 mal 1019 Stellungen, also 51 Trillionen, somit mehr als es Stellungen auf dem Zauberwürfel gibt. Und dabei ist noch nicht berücksichtigt, dass jedes der Puzzleteile im Spiel ja 4 Lagen einnehmen kann.

Anderes Beispiel: 30 Hühnereier in ihre Kartons zu stellen, ergibt 2,6 mal 1032 Möglichkeiten (30!). Billionenfach schwieriger als den Zauberwürfel zu lösen ist es allerdings nicht.

Was den Zauberwürfel (und insbesondere seine Lösung innerhalb von wenigen Sekunden) so anspruchsvoll macht, dass man nicht (wie bei den Puzzleteilen oder den Hühnereiern) die Teile einzeln bewegen kann. Vielmehr bewegen sich bei jeder Drehung jedes Mal 4 Ecksteine und 4 Kantensteine (von insgesamt 8 Ecken und 12 Kanten). Und mit der nächsten Drehung wahrscheinlich ein paar von diesen, zusammen mit anderen Steinen, die bei der Drehung zuvor noch unbeteiligt waren.

Womit wir bei der Frage sind, wie man denn von jeder beliebigen der 43 Trillionen Stellungen zurück zum gelösten Würfel findet. Darum geht es im nächsten Artikel der Serie über Wissenswertes rund um den Zauberwürfel.

Zusammenfassung:

  • Es gibt über 43 Trillionen verschiedene Stellungen auf dem Zauberwürfel. 4,3 mal 1019. Ausgeschrieben 43.252.003.274.489.856.000.
  • Hätte man jeweils einen eigenen Zauberwürfel für jede der möglichen Stellungen, dann ergäbe dies einen Turm von 260 Lichtjahren Höhe. Mit diesen 43 Trillionen Cubes könnte man die ganze Erde etwa 15m hoch bedecken.
  • Ein Zauberwürfel, der nicht nur verdreht, sondern vermischt zusammengesetzt wurde, hat 12mal mehr Möglichkeiten. Aber aufgrund mathematischer Zusammenhänge ist er dann in den meisten Fällen nicht lösbar.
  • Aber die Zahl sagt gar nicht so viel aus. Selbst ein Legepuzzle mit nur 21 Teilen hat schon mehr Möglichkeiten, die Teile anzuordnen. Die Schwierigkeit des Zauberwürfels steckt also nicht in der Anzahl der möglichen Stellungen, sondern darin, dass sich bei jeder Drehung immer 8 Steine zusammen bewegen.

 

Dieser Beitrag wurde unter Zauberwürfel veröffentlicht. Setze ein Lesezeichen auf den Permalink.

3 Antworten zu Wie viele verschiedene Stellungen gibt es auf dem Zauberwürfel?

  1. Nuyan sagt:

    Hallo

    Wie viele mögliche Positionen kann ein 2×2, 4×4, Pyraminx und Megaminx haben?
    Würde mich auch interessieren.

    Danke
    Nuyan

    • Roland sagt:

      Hallo Nuyan, Du hast doch jetzt gesehen, wie es (auf Wikipedia) für den 3×3 berechnet wird. Versuch doch mal, das für die genannten anderen Cubes entsprechend zu machen. Und dann diskutieren wir die Ergebnisse. 🙂
      Vielleicht steht aber auch in den entsprechenden Wikipedia-Artikeln zu den Cubes schon die Lösung. Ich hab noch nicht nachgeschaut…
      LG, Roland

  2. Pingback: Wie ist der Zauberwürfel aufgebaut? Und wie wird er gelöst? | Rolands Zauberwürfel-Blog – freshcuber.de

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.